

P-003-1016001 Seat No. _____

Third Year B. Sc. (Sem. VI) (CBCS) Examination

March / April - 2020

Mathematics : BSMT - 08 (A)

(Graph Theory & Complex Analysis - II)

(New Course)

Faculty Code : 003
Subject Code : 1016001

Time : $2\frac{1}{2}$ Hours] [Total Marks : 70]

Instructions : (1) All the questions are compulsory.
(2) Figures to the right indicate full marks of the question.

1 (A) Answer the following short answer questions : 4

- (1) Define : Pendant vertex
- (2) Define : Unicursal graph
- (3) Give number of edges in a Hamiltonian circuit with n vertices.
- (4) Define: Rank and nullity of a graph.

(B) Answer in Brief : (Any One) 2

- (1) A graph G is a tree then prove that there is exactly one path between every pair of vertices.
- (2) Prove that a binary tree with n vertices has $\frac{n+1}{2}$ pendant vertices.

(C) Answer in Detail : (Any One) 3

- (1) State and prove necessary and sufficient condition for a graph to be disconnected.
- (2) Define radius and diameter of a graph and show by an example that diameter of a graph is not twice the radius of the graph.

(D) Answer in Detail : (Any One) 5

- (1) Explain Konigsberg bridge problem.
- (2) State and prove a necessary and sufficient condition for a graph to be Euler.

2 (A) Answer the following short answer questions : 4

- (1) Define : Maximal independent set.
- (2) Define : Edge connectivity
- (3) How many vertices Kuratowski's second graph have ?
- (4) Define : Separable graph.

(B) Answer in Brief : (Any One) 2

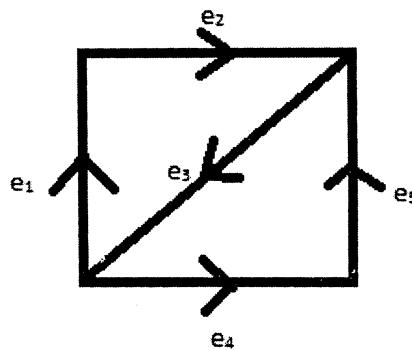
- (1) Define : Planer graph
- (2) Define : Proper vertex colouring and chromatic number of a graph.

(C) Answer in Detail : (Any One) 3

- (1) Show that Kuratowski's first graph is non planer.
- (2) State the definition and properties of Adjacency matrix.

(D) Answer in Detail : (Any One) 5

- (1) If G is a graph with n vertices, e edges, f faces and k components, then show that $n - e + f = k + 1$.
- (2) Obtain minimal decyclization of the graph G given below :



3 (A) Answer the following short answer questions : 4

- (1) Define : Bilinear / Mobious transformation.
- (2) Define : Inversion Mapping
- (3) Define : Rotation Mapping
- (4) Define : Fixed points

(B) Answer in Brief : (Any One) 2

- (1) Define : Critical points
- (2) Find the fixed point transformation for $w = z^2$

(C) Answer in Detail : (Any One) 3

- (1) Obtain bilinear transformation which maps the points $z_1 = -i, z_2 = 0, z_3 = i$ of z -plane onto the points of w - plane as $w_1 = -1, w_2 = i$ and $w_3 = 1$.
- (2) Prove that $w = \frac{az + b}{cz + d}$ is conformal mapping

(D) Answer in Detail : (Any One) 5

- (1) Prove that the transformation $(w+1)^2 = \frac{4}{z}$ maps the points lying on unit circle in w - plane onto the points lying onto parabola in z - plane.
- (2) Show that the set of all bilinear maps for a group under composition of maps.

4 (A) Answer the following short answer questions : 4

- (1) Write the Maclaurin's series expansion of $\sin z$ and $\cos z$.
- (2) State Taylor's infinite series for analytic function.
- (3) Define : Absolute convergence of series.
- (4) Write Maclaurin's series for $\frac{1}{1+z}$

(B) Answer the following in Brief : (Any One) 2

- (1) Obtain Maclaurin's series expansion of $\cosh z$.
- (2) Find the region of convergence and radius of convergence for $\sum_{n=1}^{\infty} \frac{z^n}{3^n + 1}$

(C) Answer in Detail : (Any One) 3

- (1) Expand $\frac{1}{(z-1)(z-2)}$ in Laurent's series for $1 < |z| < 2$
- (2) State and prove necessary conditions for a series $\sum z_n$ to be convergent.

(D) Answer in Detail : (Any **One**) 5

- (1) State and prove Laurent's theorem for analytic function.
- (2) State and prove necessary and sufficient condition for complex sequence $\{Z_n\}$ to be convergent.

5 (A) Answer the following short answer questions : 4

- (1) Define : Isolated singular point.
- (2) Define : Residue
- (3) Find the zeros of $f(z) = z(z-1)$.
- (4) Define : Simple pole

(B) Answer in Brief : (Any **One**) 2

- (1) Find $\text{Res} \left(\frac{e^{2z}}{z(z-1)}, 0 \right)$ and $\text{Res} \left(\frac{e^{2z}}{z(z-1)}, 1 \right)$
- (2) Discuss the method to find residue at simple pole.

(C) Answer in Detail : (Any **One**) 3

- (1) Using Residue theorem, prove that

$$\int_0^{\infty} \frac{\cos x}{x^2 + 1} dx = \frac{\pi}{2e}$$

- (2) Evaluate $\int_{|z|=1} \frac{z \sec z}{(z-1)^2} dz$ by using Cauchy's Residue theorem.

(D) Answer in Detail : (Any **One**) 5

- (1) Prove that $\int_0^{\infty} \frac{dx}{x^4 + 1} = \frac{\pi}{2\sqrt{2}}$.
- (2) Prove : $\int_0^{2\pi} \frac{\cos 3\theta}{5 - 4 \cos \theta} d\theta = \frac{\pi}{12}$